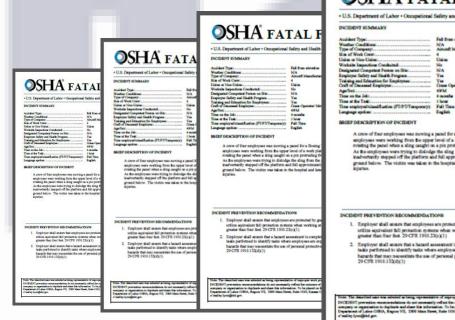
Using Risk Assessment to Justify Higher Level Controls

Kansas Safety and Health Conference
October 19, 2016

Bruce K. Lyon, CSP, PE, ARM, CHMM Director of Risk Management Services

Risk Assessment

- 1. The Need for Assessing Risk
- 2. Risk Assessment Process
- 3. Selecting Tools
- 4. Selecting 'Higher Level' Controls


Fatalities and Serious Incidents (FSI)


Incident rates have declined

player Safety and Health Program

FSI rates basically unchanged ->

Fatalities and Serious Incidents (FSI) Continue to Occur

- Major Disasters
- Fires and Explosions
- Chemical Releases
- FSIs in Construction, Energy, Agriculture,
 Transportation, among other industries

Suggested sources: NIOSH FACE Reports http://www.cdc.gov/niosh/face/inhouse.html
CSB Videos: http://www.csb.gov/videos/

The Need for Assessing Risk

September 8, 2010

"A formal risk assessment might have enabled the BP Macondo well team to identify further mitigation option to address risks..." p. 36

Key Standards

- ISO 31000 ANSI/ASSE Z690-2011 Risk Management Standards
- ANSI/ASSE Z590.3-2011 Prevention through Design
- ANSI B11.0-2015 Safety of Machinery
- MIL-STD-882E-2012

Safety Management Systems requiring Risk Assessment

- OSHA's VPP
- ANSI Z10
- BS OHSAS 18001
- ILO-OSH 2001
- ISO 14001
- ISO 45001

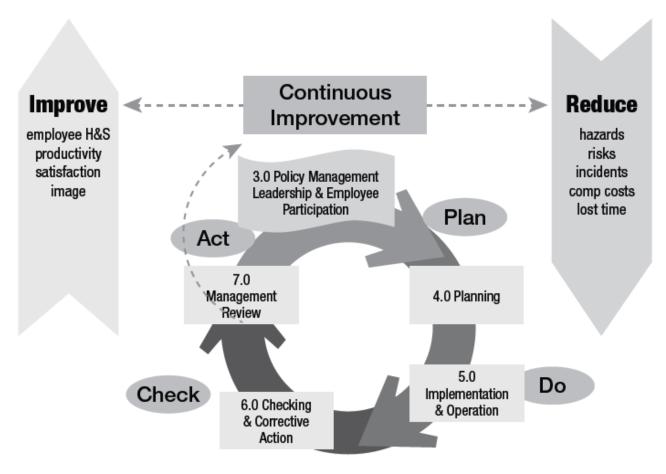
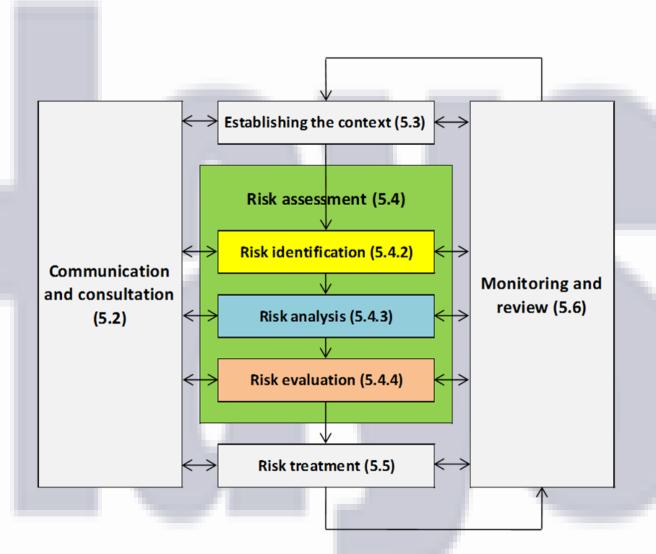


Figure 2-OHSMS Cycle

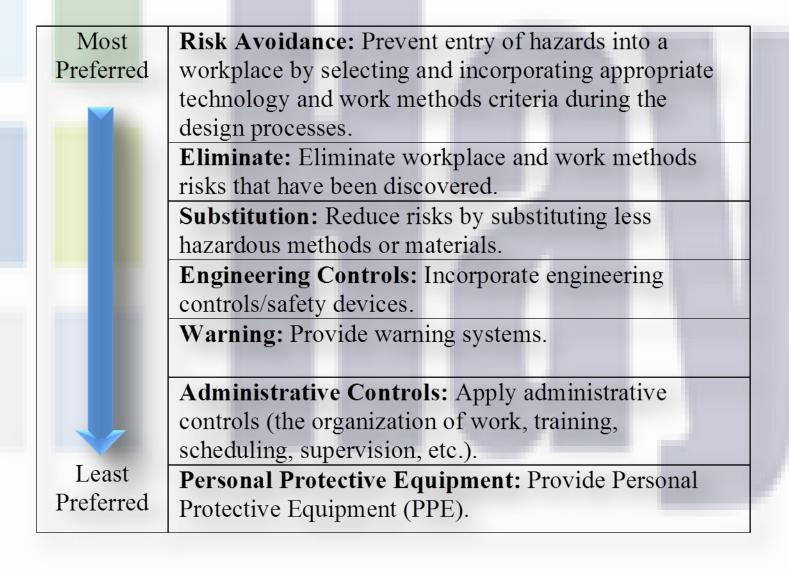
The Rising Importance of Risk Assessment

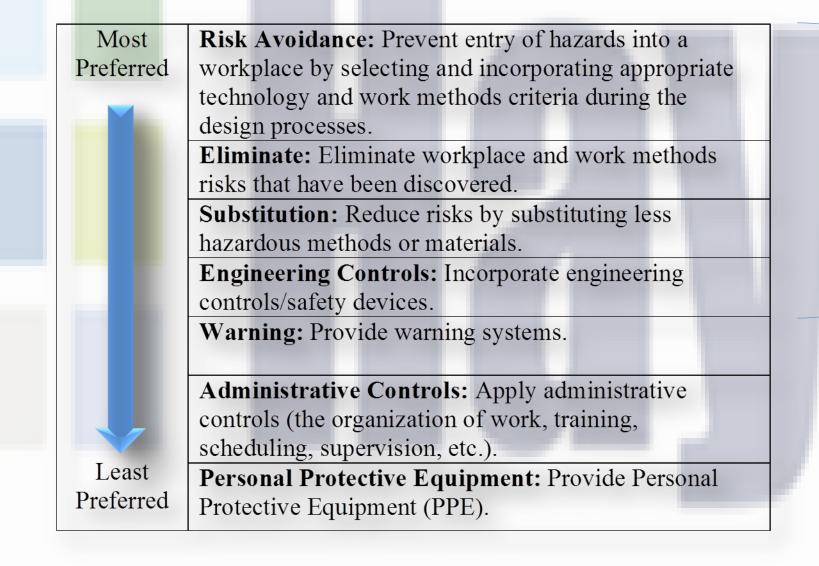

- Established February 2013
- Risk-based information, tools, and research for safety professionals
- Risk Assessment Certificate Program

http://www.oshrisk.org/

Risk Assessment

- 1. Identify Hazards/Risks
- 2. Analyze Risk
- 3. Evaluate Risk


4. Treat Risk


ISO 31000/ANSI/ASSE Z690-2011

Hierarchy of Controls

Hierarchy of Controls

Higher Level

Controls

Triggers for Risk Assessment

- Organizational Change
- New Designs or Redesigns
- Change Management
- Procurement
- Third-party interaction
- Non-routine Activities
- High-risk Activities
- Incidents

Selecting Risk Assessment Tools

Consider the following:

- The Application (New Design; Existing System; General or Specific Hazards)
- Level of Detail Needed
- Complexity of the System
- Size of the System
- What Resources are Available

Selecting Risk Assessment Tools

- ✓ As a general rule, the simplest tool or tools that provide sufficient information to make an appropriate risk management decision is advised.
- ✓ No single assessment tool is able to meet 'all' requirements for all risks.
- ✓ Modified tools may be necessary (and even desired)
- ✓ Often a combination of tools is necessary.

Selecting Risk Assessment Tools

Fundamental Tools commonly used include:

- JHAs and JRAs
- Preliminary Hazard Analysis
- What-if Analysis
- Failure Mode and Effects Analysis
- Bow Tie Analysis
- Risk Matrix

Job Hazard Analysis

- ✓ Used to identify job steps, hazards and controls
- ✓ Helpful in job training and incident investigation
- ✓ Does not include an 'assessment of risk', just identification of hazards and controls

	Job Hazard Anal	ysis			
Job: Equipment Preparation &	Rig Up	Date: 4-1-15			
Task	Hazards	Controls			
Assess location to determine the spotting of equipment	1.a: struck by moving equipment	1.a: Spotters; high visibility vest; controlled access; maintain 25' distance from operation			
2. Unhook trailers and rig up gin poles	2.a: hand pinch; 2.b: struck by pole; 2.c: struck by moving equipment	2.a: Grabber hooks with safety latches; hand placement; 2.b: certified cables with tags on poles;2.c: Spotter; High-vis vest			
3. Unload iron, valves, separators, plug catchers	3.a: chain sling failure; 3.b: manual handling; 3.c: vehicle backing	3,a: certified & tested slings; visual daily inspection 3.b: use of mechanical aids; proper lifting; 3.c: spotters; high-vis vest; 360 walk around			
4. Set & install plug catcher, hydraulic chokes & half pit	4.a: chain sling failure; 4.b: manual handling; 4.c: backing vehicles	4.a: certified & tested slings; visual daily inspection 4.b: use of mechanical aids; proper lifting; 4.c: spotters; high-vis vest; 360 walk around			
5. Set & install sand separator, bypass, & hook up to frac tank	5.a: chain sling failure; 5.b: pinch points; 5.c: manual handling; 5.d: backing vehicles	5.a: certified & tested slings; visual daily inspection 5.b: proper hand placement; 5.c: use of mechanica aids; proper lifting; 5.d: spotters; high-vis vest; 360 walk around			

Job Risk Assessment

- ✓ Same as JHA but includes a 'risk assessment' of each hazard
- ✓ Allow jobs, hazards and controls to be prioritized by 'risk level'

			l D'-l		<u> </u>					
Job: Equipment Prepa	ration & Rig Up	Job Risk Assessment Assessed by: ion & Rig Up Smith			J. Doe; B.		Date: 4-1-15	,		
			Pre	e-conti	rols			Pos	st-cont	rols
Task	Hazard	At Risk	Initial Severity (IS)	Initial Likelihood (IL)	Initial Risk (IR)	Controls	U		Residual Likelihood (RL)	
1. Assess location to determine the spotting of equipment	equipment	Supervisor; equipment; vehicles	3	3	13	1.a: Spotters; high visibi controlled access; main distance from operation	tain 25'	2	2	5
2. Unhook trailers and rig up gin poles	struck by pole; 2.c:	Ground crew; equipment; vehicles	4	3	18	2.a: Grabber hooks with latches; hand placemen certified cables with tag poles;2.c: Spotter; High	t; 2.b: s on	3	2	12
3. Unload iron, valves, separators, plug catchers		Ground crew; equipment; vehicles	4	3	18	3,a: certified & tested sl visual daily inspection; 3 mechanical aids; proper 3.c: spotters; high-vis ve walk around	3.b: use of lifting;	3	2	12
4. Set & install plug catcher, hydraulic chokes & half pit	4.a: chain sling failure; 4.b: manual handling; 4.c: backing vehicles	Ground crew; equipment; vehicles	4	3	18	4.a: certified & tested sl visual daily inspection; 4 mechanical aids; proper 4.c: spotters; high-vis ve walk around	1.b: use of lifting;	3	2	12

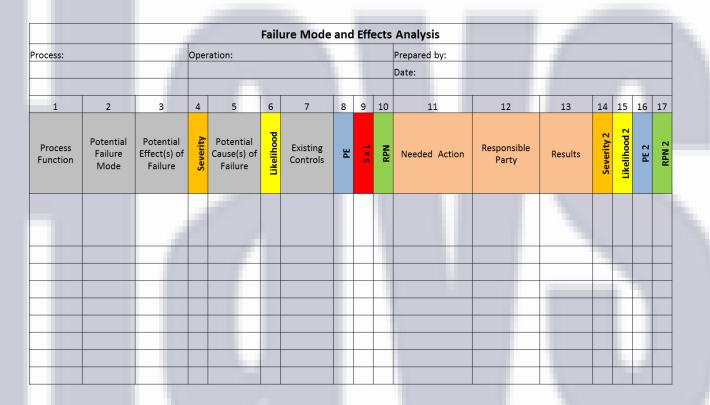
- ✓ An 'Initial Analysis' tool
- ✓ Used to identify hazards and control measures (current and future/proposed)
- ✓ Used for new designs or existing systems
- ✓ Allows for risk levels to be prioritized for further assessment and management

Task	Hazard	Current	Severity	Current	Current Risk Level	Recommended Controls	Future	Severity	Future	Likelihood	Future	Risk Level
Dispensing High Hazard Chemical	Health risk from leak or release; 2 ppm PEL; 100 ppm lethal dose; Heavier than air. EPA regulated product.	4		3	12	Substitute high hazard chemical with less hazardous product	2		2		4	1
1												

What-if Analysis

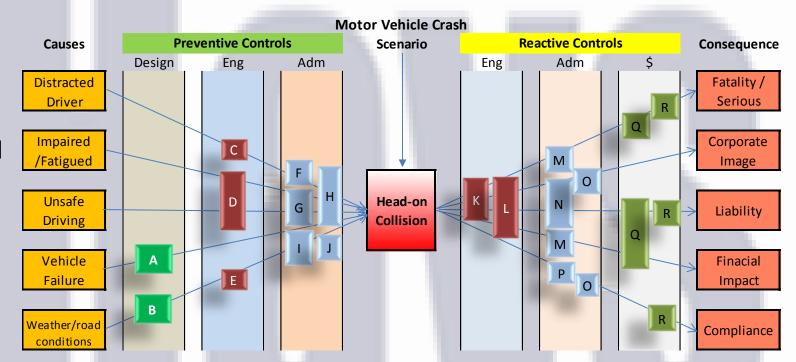
- ✓ Team-based brainstorming
- ✓ Used to identify and analyze scenarios and hazards
- ✓ Typically does not include 'risk analysis' (severity and likelihood levels)
- ✓ Can be modified to include risk analysis

Structured What-If Technique Analysis


peration/Process: Rail Tank Car Cleaning - Vapor Combustion System

Team: Bruce Lyon, Facilitator; Deane H., Fire Protection Specialist; Tom G., Enginee 12-17, 2012 P., Safety & Health; Charles T., Environmental; Don B., Maintenance; Kevin S., Production/Tank Car Cleaning

	B. Com	bustor Start-Up		
What-If	Causes	Consequences	Controls	Recomm
Waste gas valve on degas rack is left open during combustor start-up operation	Human error or omission - waste gas valve is not closed or completely closed.	Fire or explosion; damage to combustor	Operator training in VCS Instructions manual and VCS start-up JSA procedure	B.1.1 Gas open and positions and label B.1.2 Alar valve is n complete start-up.
Steam condensate is not drained from evaporator tank	Human error or omission - tank not completely drained before combustor start-up	Pollution - emissions - incomplete combustion	Operator training in VCS Instructions manual and VCS start-up JSA procedure	B.2.1 Bott on evapo tank with turn mark labeled.


FMEA

- A method used to identify the ways a system can fail
- Used for new and existing designs, products, processes and systems
- Analyzes failures individually
- FMEA identifies:
 - Potential failure modes
 - Effects of failures
 - The causes of failures
 - How to avoid the failures

Bow Tie Analysis

- A combination of a fault tree and event tree analysis
- Used to show risk pathways and control measures "big picture" view
- Communicate risk exposures and controls
- Attention to both preventive controls and reactive measures
- Typically lacks a risk scoring mechanism

Risk Matrix

- Used to rank risks as part of 'risk evaluation'
- Provides a consistent method of prioritizing
- Communicates risk to management

			Risk Matrix						
	Catastrophic	21	22	23	24	2 5			
Ę	Critical	14	15	18	19	20			
Severity	Serious	6	12	13	16	17			
Se	Moderate	4	5	9	10	11			
	Minor	1	2	3	7	8			
		Improbable	Remote	Occasional	Probable	Frequent			
			Likelihood						

	Risk Action Levels										
Risk Level	Action										
Unacceptable	Immediate action required. Operation not permissible, except										
Offacceptable	in rare and extra-ordinary circumstances.										
High	Remedial action is to be given high priority.										
Moderate	Remedial action is to be taken at appropriate time.										
Low	Remedial action is discretionary. Procedures are to be in place										
LOW	to ensure risk level is maintained.										

Case Study

- Concerns from Chemical use
- 2. Conducted
 Preliminary Hazard
 Analysis (PHA) of
 Winery
- 3. Proposed High-level Controls

Established Winery's Risk Criteria

Established the Winery's Risk Criteria to be used in the risk assessment

Severity Level	Definition
Catastrophic (4)	Fatalities; Damage to Community, Environment, and Reputation
High (3)	Permanent Disability Injury or Illness; Multiple Injury Events
Moderate (2)	Injury or Illness Requiring Medical Attention
Low (1)	Minor Injury or First Aid Incident

Likelihood Level	Definition
Very Likely (4)	Will happen under right situations; has occurred multiple times
Likely (3)	Likely to happen under right circumstances; has occurred in past
Possible (2)	Can happen in certain situations
Unlikely (1)	Unlikely to happen; remotely possible

	Low (1)	Moderate (2)	High (3)	Catastrophic (4)
Very Likely (4)	4	8	12	16
Likely (3)	3	6	9	12
Possible (2)	2	4	6	8
Unlikely (1)	1	2	3	4

Concern #1 - Pure Liquid Sulfur Dioxide

Used for dosing tanks inside buildings

Filling and Dispensing

Concern #1 - Pure Liquid Sulfur Dioxide

Risks

- Potential for releases during filling and dispensing
- Lethal dose = 100 ppm (Cal-OSHA PEL = 2 ppm) (ACGIH TLV = 0.25 ppm)
- Can cause blindness
- Environmental concerns
- Transporting, dispensing, handling, storage concerns

Concern #1 - Pure Liquid Sulfur Dioxide

Sulfur dioxide (SO₂) gas is heavier than air and can accumulate in closed areas.

The configuration and lack of ventilation in the bottling area presented a significant risk to employees should a SO₂ release occur in the area.

		Task	Hazard	Current Severity	Current Likelihood	Current Risk Level	Recommended Controls	Future Severity	Future	Future	Risk Level
	usin	Dosing g 100% liquid	Health risk from leak or release; 2 ppm PEL; 100 ppm lethal dose; Heavier than air. EPA regulated product.	4	3	12				ļ	
			Airgas								

	Task	Hazard	Current Severity	Current Likelihood	Current Risk Level	Recommended Controls	Future Severity	Future	Likelihood	Future	Risk Level
u	O2 Dosing sing 100% O2 liquid	Health risk from leak or release; 2 ppm PEL; 100 ppm lethal dose; Heavier than air. EPA regulated product.	4	3	12	Unacceptable FSI Risk					1
		Airgas									

Proposed Control – Substitute with Less Hazardous Product

	Task	Hazard	Current Severity	Current Likelihood	Current Risk Level	Recommended Controls	Future Severity	Future Likelihood	Future Risk Level
usin	Dosing g 100% liquid	Health risk from leak or release; 2 ppm PEL; 100 ppm lethal dose; Heavier than air. EPA regulated product.	4	3	12	Substitute 100% SO2 with 6% liquid SO2 and K2S2O5 (potassium meta-bisulfite) effervescent tables, granular, powder	2	2	4
		Airgas							

Proposed Control – Substitute with Less Hazardous Product

Task Hazard		Current Severity	Current Likelihood	Current Risk Level	Recommended Controls	Future Severity	Future Likelihood	Future Risk Level	
usin	Dosing g 100% liquid	Health risk from leak or release; 2 ppm PEL; 100 ppm lethal dose; Heavier than air. EPA regulated product.	4	3	12	Substitute 100% SO2 with 6% liquid SO2 and K2S2O5 (potassium meta-bisulfite) effervescent tables, granular, powder	2	2	4
		Airgas							k

Concern #2 -DMDC Dosing

- Dimethyl Dicarbonate (DMDC) used to prevent spoilage
- DMDC inhibits yeast with half-life of 3 hours which converts to CO2 and methanol
- Highly specialized metering equipment and training operators

Concern #2 -DMDC Dosing

- Metering equipment located in the bottling area
- Bottling Area had limited ventilation and limited means of escape
- Exposure ceiling limit is 0.04 ppm
- Releases have occurred due to operator error and equipment failure

Task	Hazard	Current	Current	Current Risk Level	Recommended Controls	Future Severity	Future	Likelihood	Future Risk Level
DMDC metering equipme in bottlin area	nn <mark>m evnosur</mark> e ceiling	4	3	12	Unacceptable FSI Risk				Ì

Task	Hazard	Current Severity	Current Likelihood	Current Risk Level	Recommended Controls	Future Severity	Future Likelihood	Future Risk Level
DMDC metering equipment in bottling area	Health risk to bottling employees from leak or release in area; 0.4 ppm exposure ceiling limit	4	3	12	Eliminate exposure - relocate DMDC unit outside building (connected with hose) with open ventilation away from bottling area; continue to follow safety protocols and PPE for operator.	3	1	3
								ŀ

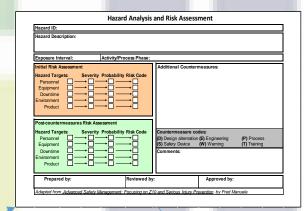
75% risk reduction

	Task	Hazard	Current Severity	Current Likelihood	Current Risk Level	Recommended Controls	Future Severity	Future Likelihood	Future Risk Level
me eq	ADC etering uipment bottling ea	Health risk to bottling employees from leak or release in area; 0.4 ppm exposure ceiling limit	4	3	12	Eliminate exposure - relocate DMDC unit outside building (connected with hose) with open ventilation away from bottling area; continue to follow safety protocols and PPE for operator.	3	1	3

As a Result | Eliminated two FSI Risks

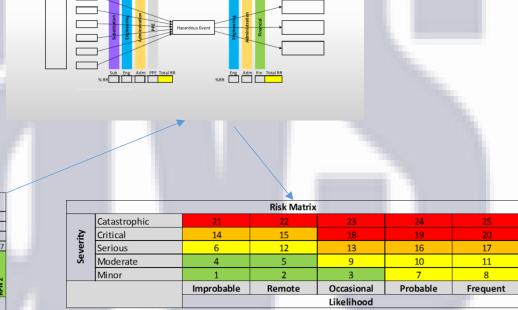
Task	Hazard	Current Severity	Current Likelihood	Current Risk Level	Recommended Controls	Future Severity	Future Likelihood	Future Risk Level
SO2 Dosing using 100% SO2 liquid	Health risk from leak or release; 2 ppm PEL; 100 ppm lethal dose; Heavier than air. EPA regulated product.	4	3	12	Substitute 100% SO2 with 6% liquid SO2 and K2S2O5 (potassium meta-bisulfite) effervescent tables, granular, powder	2	2	4
DMDC metering equipment in bottling area	Health risk to bottling employees from leak or release in area; 0.4 ppm exposure ceiling limit	4	3	12	Eliminate exposure - relocate DMDC unit outside building (connected with hose) with open ventilation away from bottling area; continue to follow safety protocols and PPE for operator.	3	1	3

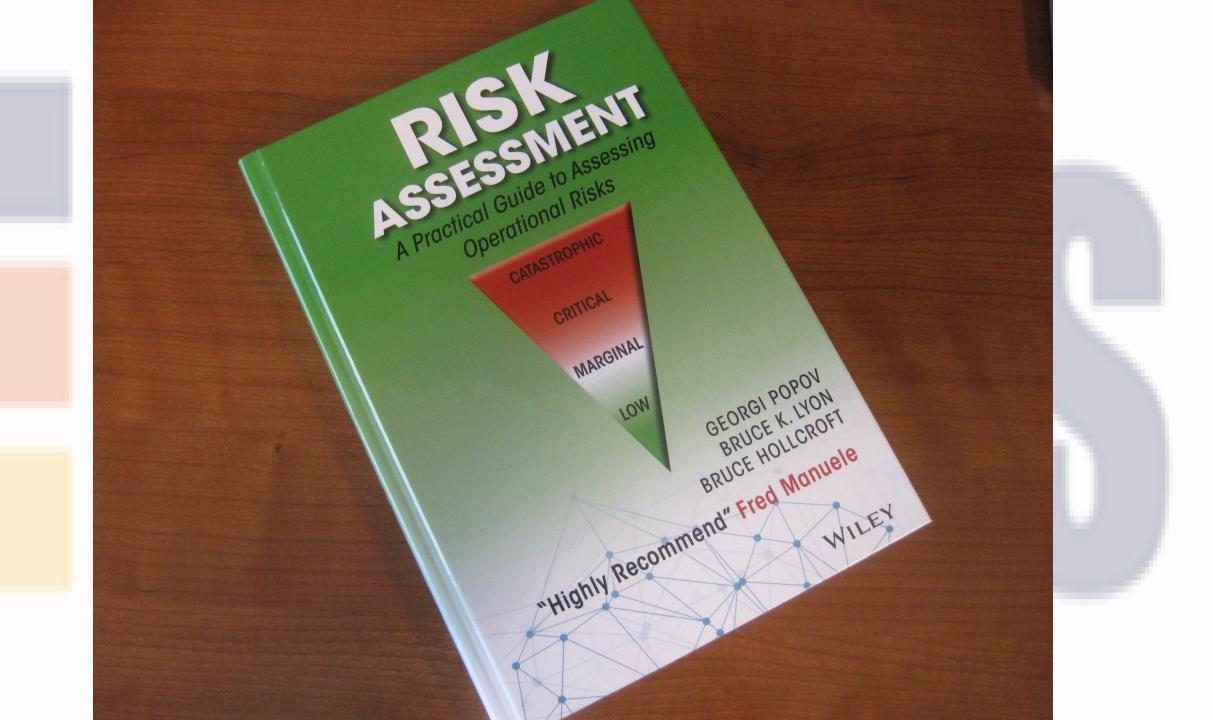
	Most	Risk Reduction Measures	Examples	Influence on Risk Factors	Classification
	Preferred	Elimination or Substitution	 Eliminate pinch points (increase clearance) Intrinsically safe (energy containment) Automated material handling (robots, conveyors, etc.) Redesign the process to eliminate or reduce human interaction Reduced energy Substitute less hazardous chemicals 	 Impact on overall risk (elimination) by affecting severity and probability of harm May affect severity of harm, frequency of exposure to the hazard under consideration, and/or the possibility of avoiding or limiting harm depending on which method of substitution is applied. 	Design Out
		Guards, Safeguarding Devices, and Complimentary Measures	 Barriers Interlocks Presence sensing devices (light curtains, safety mats, area scanners, etc.) Two hand control and two- hand trip devices 	Greatest impact on the probability of harm (Occurrence of hazardous events under certain circumstance) Minimal if any impact on severity of harm	Engineering Controls
		Awareness Devices	 Lights, beacons, and strobes Computer warnings Signs and labels Beepers, horns, and sirens 	 Potential impact on the probability of harm (avoidance) No impact on severity of harm 	
A <mark>NSI B11.</mark> 0 – Hazard		Training and Procedures	 Safe work procedures Safety equipment inspections Training Lockout / Tagout / Verify 	 Potential impact on the probability of harm (avoidance and/or exposure) No impact on severity of harm 	Administrative Controls
Control	Least Preferred	Personal Protective Equipment (PPE)	 Safety glasses and face shields Ear plugs Gloves Protective footwear Respirators 	 Potential impact on the probability of harm (avoidance) No impact on severity of harm 	


PHA Results

Implementing 'higher level' controls including 'substitution' and 'elimination' resulted in the following benefits:

- Removed two Fatal or Serious Incident (FSI) level risks
- A risk reduction of 66% for SO2 exposure to employees and community
- A reduction in risk level of 75% for DMDC exposure risk
- Improved employee morale
- Eliminated EPA reporting requirements for SO2
- Reasonably low costs for K₂S₂O₅ effervescent tables and ease of use
- Low costs to relocate and shelter DMDC metering machine outside


Using a Series of Risk Assessment Tools



				ган	ur	e ivioue	ail	4 61	iec	ts Analysis						
Process:			Op	eration:						Prepared by:						
		_								Date:						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1
Process Function	Potential Failure Mode	Potential Effect(s) of Failure	iţ	Potential Cause(s) of Failure	Occurrence	Existing Controls	PE	Sev + Occ	RPN	Needed Action	Responsible Party	Results	Severity 2	Occurrence 2	PE 2	C INDO
							_									
			⊢		_		-	-					-	\vdash	⊢	H
			\vdash		_									\vdash	\vdash	H
			\vdash				\vdash						\vdash		\vdash	H
			l													

'Striped' Bow Tie Analysis

Sequence of Methods used in a Risk Assessment Identification Develop Checklist Brainstorming Interviews Documents Hazards Survey Hierarchy of **Bow Tie** Analysis **FMEA** Preliminary Hazard Analysis Hazard Causes, Controls Analysis Severity, Likelihood, Control Diagram to Controls effectiveness Communicate Risk -Simple Risks-Evaluation Risk Cost/Benefit Risk Levels and Risk Profile Assessment Monitor and **Analysis Actions Matrix** Prioritize and Review Prioritize risk for Matrix Business decisions Communicate Risks treatment for treatment Compare Risks

